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Abstract

Frequency modulated continuous wave (FMCW) radars have been widely used
for measuring target range and speed. In this paper, we present a mathematical
model that quantifies the system-level performance of FMCW radar systems.
In FMCW radar, the target range is measured through measuring the beat
frequency between the transmitted and received signal, usually by using Fast
Fourier Transform (FFT). One drawback of this approach is that when the beat
frequency of a target is not on the FFT grid, both the detection probability and
the false alarm rate (FAR) performances are degraded. In this paper, we propose
a new detector, using frequency shifts, that improves the detection probability
for off the grid targets at a cost of a slight increase in FAR.

1 Introduction

In Frequency Modulated Continuous Wave (FMCW) radar, the transmit signal is gen-
erated by frequency modulating a continuous wave signal. In one sweep of the radar
operation, the frequency of the transmit signal varies linearly with time. This kind
of signal is also known as the chirp signal. As shown in Figure 1, the transmit signal
sweep a frequency of ∆f in one chirp duration. Due to the propagation delay, the
received signal bounced back from a target has a frequency difference, called the beat
frequency, compared to the transmit signal. The range of the target is proportional
to the beat frequency. Thus, by measuring the beat frequency, the target range can
be obtained [1]. Similar to other radar systems, there are two important performance
indicators in FMCW radar systems, namely the detection probability and false alarm
rate (FAR). The detection probability is the probability of detecting a target when it is
present, while the FAR is the probability of declaring a target when there is no target.
At an algorithmic level, the performance of different detection algorithms for radar
systems is usually gauged in terms of the detection probability for a particular signal
to noise ratio (SNR) and a given acceptable FAR. From a system level design on the
other hand, the system designer is interested in the performance that can be achieved
for a certain radar system with a given set of specifications. We have noticed a lack
of models that link the performance at these two levels for FMCW radar systems. In
view of this, in this paper, we present a mathematical model that models the system-
level detection performance for FMCW radars. To illustrate the use of this model,
we present an example of evaluating the system-level radar performance in detecting
cars, cyclists and pedestrians in traffic monitoring using a typical 24 GHz frequency
modulated continuous wave (FMCW) radar.

In FWCW radar, the target range is measured through measuring the beat fre-
quency, which is usually done using Fast Fourier Transform (FFT) due to its low
computational complexity [1]. A well know property of the FFT is that each frequency
bin has a sinc-shaped spectrum [2]. When the beat frequency of the target falls be-
tween the FFT grids in the middle of frequency bins, the detection performance will
be degraded due to two factors. Firstly, the amplitude of the target signal at the FFT
output is attenuated, which reduces the SNR and hence also the detection probability.
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Figure 1: Time-frequency plot of FMCW radar signals.

Secondly, due to the sinc-shaped spectrum, a single target leads to multiple signals
present on different FFT grids, which increases the false alarm rate (FAR) in neigh-
boring frequency bins. As a results, the average FAR over all frequency bins is also
increased. One popular method to mitigate these degradations is to use windowing
before FFT. However, the detector frequency resolution is reduced due to windowing.
In this paper, we present a new detector to improve the detection probability for off the
FFT grid targets without sacrificing frequency resolution. However, this improvement
is achieved at the cost of a slight increase in the average FAR.

2 Principles of FMCW radar
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Figure 2: Block diagram of an FMCW radar system.

A block diagram of an FMCW radar system is shown in Figure 2. The transmitter
generates a frequency modulated continuous wave using a signal generator and a voltage
controlled oscillator (VCO). The transmit signal can be written as

x(t) =
√

2Pt cos

(

2πfcat+ 2π
∆f

2Tc
t2
)

, (1)

where Pt is the transmission power, fca is the carrier frequency, ∆f and Tc are the
sweep frequency and the chirp duration. The signal is transmitted via the transmit
antenna with gain Gt and is reflected back by a target with a radar cross section (RCS)
of Σ that is d meters away. The received signal from a receive antenna with gain Gr
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can be written as

r(t) =
√

2Pr cos

(

2πfca (t− Tp) + 2π
∆f

2Tc
(t− Tp)

2

)

+ n(t), (2)

where Pr is the received signal power, Tp is the propagation delay and n(t) is the noise
signal. Using the well known radar equation [3], the relationship between Pt and Pr

can be expressed as

Pr =
PtGtGrΣλ

2

(4π)3d4
, (3)

where λ is the wavelength given by λ = c/fca with c = 3× 108 m/s being the speed of
light. The received signal is passed through a receiver front end with a certain noise
figure (NF) F dB, where it is mixed with transmit LO output and passed through
a low pass filter (LPF) with a bandwidth B. In FMCW radar, the bandwidth B is
determined by B = ∆f2dmax

c
1
Tc
, where dmax is the pre-determined maximum distance of

targets. The LPF output, which is commonly called the IF signal, can be written by

y(t) =
√

2Py cos

(

2π
∆f

Tc
Tpt + 2π

(

fcaTp −
∆f

2Tc
T 2
p

))

+ ny(t), (4)

where Py is the power of the desired signal after LPF and ny(t) is the noise. The beat
frequency fb is the frequency of the desired signal in y(t), which can be obtained as

fb =
1

2π

d

dt

(

2π
∆f

Tc
Tpt+ 2π

(

fcaTp −
∆f

2Tc
T 2
p

))

=
∆f

Tc

Tp =
∆f

Tc

2d

c
. (5)

From (5), we can see that the range of the target d can be obtained straight-forwardly
once we know the beat frequency fb. The signal to noise ratio of y(t) is given by

γ = Py

Pny
. Denoting the front end power gain as Gfe = Py/Pr, Py can be written as

Py = GfePr =
PtGtGrΣλ

2Gfe

(4π)3d4
. (6)

Considering only the thermal noise, the average power of noise ny can be obtained as

Pny
= GfeB10(−174−30+F )/10, (7)

where the power spectrum density of the thermal noise is taken as -174 dBm/Hz.
Therefore, the average time-domain SNR of the IF signal can be written as

γ =
Py

Pny

PtGtGrΣλ
2

(4π)3d4B10(−174−30+F )/10
, (8)

where Σ is the average RCS of the target. The IF signal is then sampled with an analog
to digital converted (ADC) and the beat frequency (target range) is estimated using
digital processing.

As shown in (5), in the FMCW radar, the range of the target can be estimated
through estimating the beat frequency. In practice, the beat frequency is usually
estimated using fast fourier transform (FFT) due to its low computational complexity.

joint WIC/IEEE SP Symposium on Information Theory and Signal Processing in the Benelux, Brussels, Belgium, May 10-11, 2011



ADC N-Point FFT
2 Target 

Detection

Threshold 

Calculation

Y

Y0

Figure 3: An FMCW detector using FFT.

A common FFT-based FMCW detector is illustrated in Figure 3. Using FFT, the
whole bandwidth B is divided into N frequency bins, where N is the FFT size. The
FFT output in each frequency bin is passed through a square law detector (| • |2)
and the output Y is compared to a calculated threshold Y0 to determine if a target is
present. As the target detection is carried out in each frequency bin independently,
in the following, we are going to focus on per-bin processing without distinguishing
different bins. We consider a Swerling I target model, in which the target RCS stays
constant within one radar scan. For different radar scans, the RCS is uncorrelated
and follows an exponential distribution as in [3]. As a result, Py is also exponentially
distributed with

f(Py) =
1

Py

exp

(

−
Py

Py

)

, (9)

where Py is the average of Py. Assuming the time-domain thermal noise is circularly
symmetric complex Gaussian (CSCG) with an average power given by (7), it can be
easily shown that the output of the square law detector Y also follows an exponential
distribution given by

f(Y ) = 1
σ2

Y

exp
(

− Y
σ2

Y

)

, and σ2
Y =

{

σ2
n; no target

σ2
n(1 + γbin); target present.

(10)

Here we use σ2
n and γbin to denote the noise power and the SNR per frequency bin

respectively. The bandwidth of a frequency bin, which is also the frequency resolution
of the FMCW radar, is given by 1/Tc [4]. Therefore,

σ2
n = Gfe

1

Tc
10(−174−30+F )/10, (11)

and it is related to time-domain noise power Pny
by Pny

= Nσ2
n. Similarly, we have

γbin =
Py

σ2
n

= N
Py

Pny

= Nγ. (12)

With (10), it can be easily shown that for a constant false alarm rate (CFAR)
detector with a desired FAR, the threshold Y0 should be chosen as [5]

Y0 = − log(FAR)σ2
n,

and the detection probability is given by [5]

Pd = exp

(

−
Y0

σ2
n(1 + γbin)

)

= exp

(

−
Y0

σ2
n(1 +Nγ)

)

. (13)

joint WIC/IEEE SP Symposium on Information Theory and Signal Processing in the Benelux, Brussels, Belgium, May 10-11, 2011



Parameter Value Parameter Value
fca (GHz) 24 Pt (dBm) 0
Gt (dB) 18 Gr (dB) 18
F (dB) 15 BW (kHz) 64
Tc (ms) 1 N 64

Table 1: Specifications of a typical 24 GHz FMCW radar.
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(a) Algorithmic-level performance of the
CFAR detector with FAR=0.001.

20 40 60 80 100 120 140 160 180

0.9

0.92

0.94

0.96

0.98

1

Distance (m)
D

et
 P

ro
b

 

 

Pedestrian
Cyclist
Car

(b) System-level performance for the con-
sidered example FMCW radar system for
traffic monitoring.

Figure 4: Algorithmic and system-level performance of the example 24 GHz FMCW
radar.

Notice that (8) and (13) provide a link between the algorithmic-level performance
related to γ and γbin with the system-level performance for a FMCW radar system with
given set of specifications (Pt, Gt, F , etc.). To illustrate how this work, we present the
following example of a typical 24 GHz FMCW radar for traffic monitoring applications.
The specifications of the example radar system is shown in Table 1. We consider the
detection of three types of targets, pedestrian, cyclists and cars. The average RCS
for these targets are 1m2, 2m2 and 100m2 respectively [3]. We consider a Swerling I
channel and use a CFAR detector [5] with a fixed FAR of 0.1%. The algorithmic-level
performance for the CFAR detector is shown in Figure 4(a). It clearly indicates the
achieved detection probability for different SNR (γ) values and the detection prob-
ability is consistent with the analytical results given by (13). Using (8) and (13),
the system-level performance of the example FMCW radar is shown in Figure 4(b).
This gives system designer a clear indication on the detection probability that can be
achieved for different targets at different distances.

3 The proposed detector

A well know property of the FFT is that each frequency bin has a sinc-shaped spectrum
[2]. When the beat frequency of the target falls exactly on the FFT grid, i.e. in the
middle of a frequency bin, as shown in Figure 5(a), the FFT output has maximum signal
amplitude (normalized to 1 in Figure 5(a)) and there is no leakage of the target signal
to the other frequency bins. The performance of FMCW radar can be characterized
with the model in Section 2. However, when the beat frequency of the target falls
in between the FFT grids as shown in Figure 5(a) for the special case in which the
beat frequency is in the middle of two FFT grids, we observe two detrimental effects.
Firstly, the amplitude of the target signal at the FFT output is attenuated, which
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(a) Effects of FFT outputs when the target
is not on the FFT grid.
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(b) Effects of FFT outputs using Hanning
window when the target is not on the FFT
grid.
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Figure 5: Proposed detector structure.

leads to degradation of the detection probability. Secondly, due to signal leakage, one
target can produce multiple signals in different frequency bins. This increases the FAR
in the other frequency bins. This degradation can be measured by the average FAR
over all frequency bins. When the target is on the FFT grid, the average FAR is equal
to the FAR per bin, as the noise in all the frequency bins has equal variance. When
the target is not on the FFT grid, the FAR of neighbouring frequency bins of the
target will increase significantly due to the signal leakage. As a result, the average
FAR over all frequency bins also increases. It can be easily shown that the worst case
happens when the target falls in the middle of two FFT grids, which leads to worst
signal attenuation and largest leakage to other frequency bins. One popular approach
to mitigate the signal attenuation and suppress the signal leakage due to high side-lobes
of sinc function is to use a windowing function before FFT. Figure 5(b) shows the FFT
output using a Hanning window for the same targets shown in Figure 5(a). We can
see that using a hanning window, both signal attenuation and leakage are reduced for
target in between two FFT grids. However, the frequency resolution of the FFT is
reduced as the width of the main lobe is doubled.

In this paper, we propose a new detector that improves the detection probability
for off the FFT grid targets without sacrificing frequency resolution. The proposed
detector, as shown in Figure 5, includes a normal detector shown in the shaded box,
which has good detection performance for targets on the FFT grid. We added a second
branch to take care of the worst case in which the target is in the middle of two FFT
grids. In this branch, a frequency shift of half a frequency bin (1/2Tc) is introduced
before the FFT. In this way, the worst case target is shifted onto the FFT grid. Taking
the maximum of the square law (| • |2) detector outputs from two branches, the output
for a target in the middle of the two FFT grids is shown in Figure 6. Comparing this
with the normal detector output, we can see that the amplitude of the target signal is
increased, which leads to better detection probability. However, the signals leaked to
other frequency bins still remain and thus the false alarm rate will not be improved.
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Figure 6: Output of the proposed detector when the target is in the middle of two FFT
grids.

In fact, the average FAR over all the frequency bins will be degraded slightly. This is
because the Max(•) operation selects the larger of the two noises at the two branches,
hence, causes a slight increase in the average FAR.

4 Simulation Results

Computer simulations were used to study the performance of the proposed detector.
Same as before, we assume a Swerling I channel [3] and use a constant false alarm
rate (CFAR) detector [5] with a fixed false alarm rate (FAR) of 0.001. The decision
on the presence of targets is made using only one chirp signal. Figure 7(a) shows
detection probability when the target is on the FFT grid and when the target is in
the middle of two FFT grids. When the target is in the middle of two FFT grids,
due to signal attenuation, the detection probability performance is degraded by 3.9 dB
(= 20× log10[sinc(0.5)]) as compared to the case when the target is on the FFT grid.
The average FAR performance for the same two groups of targets is shown in Figure
7(b). When the target is on the FFT grid, the average FAR is equal to the per bin
FAR of 0.001. However, for target in the middle of two FFT grid, due to signal leaking
to other frequency bins, we observe a significant increase in the average FAR.

Figure 8(a) shows the performance of proposed detector for targets in the middle of
the FFT grids. Compared to a normal detector, we observe a significant improvement
on the detection probability. In fact, the detection probability is the same as when the
target is on the FFT grid. The FAR performance of the proposed detector is shown in
Figure 8(b). Consistent with the explanation in Section 3, there is a slight degradation
in the FAR performance due to the Max(•)operation on the noise over the two branches
in the proposed detector.

5 Conclusions

In this paper, we presented a system-level mathematical model that maps the signal
to noise ratio (SNR) related detection algorithm performance to system-level detection
performance for specific frequency modulated continuous wave (FMCW) radar systems.
We also showed that normal FFT-based FMCW detector suffers degradation in terms of
reduction in detection probability and increase in average false alarm rate (FAR), when
the target is not on the FFT grid. We proposed a new detector, which by combining
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(a) Detection probability of CFAR detec-
tor for targets in the middle of the FFT
grids.
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Figure 7: Detection probability and average FAR over frequency bins of FMCW radar
for targets in the middle of the FFT grids.
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(a) Detection probability of the proposed
detector for targets in the middle of the
FFT grids.

−15 −10 −5 0 5 10
10

−3

10
−2

10
−1

SNR (dB)

F
A

R

 

 

Normal Det
Proposed Det

(b) FAR of the proposed detector for tar-
gets in the middle of the FFT grids.

Figure 8: Detection probability and FAR of the proposed detector for targets in the
middle of the FFT grids.

the original FFT output with a frequency-shifted FFT output improves the detection
probability significantly. However, the proposed detector has a slightly higher average
FAR than the normal detector.
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